<th id="vc94l"><option id="vc94l"></option></th>
    <tr id="vc94l"></tr>

      <strike id="vc94l"></strike>
      <code id="vc94l"></code>

      1. <th id="vc94l"><video id="vc94l"></video></th>

          1. <strike id="vc94l"></strike>

            網站首頁 期刊信息 投稿系統 期刊訂閱 下載中心 合作單位 聯系我們
            當前位置:網站首頁 > 下載中心 > 網絡首發 > 詳情頁

            我國煤中有害微量元素研究進展

            閱讀量(46) 《中國礦業》2022年第0期
            作者及單位:
          2. 曹慶一,楊 柳,錢雅慧,胡銀姐
          3. (中國礦業大學(北京)地球科學與測繪工程學院,北京 100083)
          4. 關鍵詞:
          5. 煤;有害微量元素;空間分布特征;賦存;環境影響;大數據管理
            • 論文摘要
            • |
            • 論文圖表
            • |
            • 參考文獻
            • |
            • 引用格式
            煤中有害微量元素是煤炭地質、地球化學、能源與環境等領域的研究熱點之一。本文通過調研國內外文獻,系統總結了我國煤中有害微量元素研究的相關成果。與世界煤相比,我國煤中Co、Mo、Pb、Sn、Th、U、V、Zn的平均濃度較高,而As、B、Ba、Cr、Ni和Tl的平均濃度相對較低。煤中有害微量元素含量的空間分布極不均勻,且各元素含量的分布特征有所差異。我國煤中有害微量元素含量總體呈現出由北到南逐漸遞增的分布特征,同時全國范圍內存在局部異常富集的情況。煤中有害微量元素的空間分布格局是多重因素共同作用的結果,如物源區母巖的性質、生物沉積作用、熱液作用、地下水作用等。煤中有害微量元素的賦存機制十分復雜,是影響有害物質脫除和元素遷移轉化的根本原因。大數據方法是新時代下科學方法論的一個重要補充,煤炭大數據對于煤中有害微量元素的研究具有重要潛在價值。煤中有害微量元素的賦存狀態和具體化學形態、煤中有害微量元素的環境效應、煤中有害微量元素數據管理等內容仍是未來該領域的重點研究內容。

            [1] BP. Statistical review of world energy 2021[R]. 2021.
            [2] 唐修義, 黃文輝. 煤中微量元素及其研究意義[J]. 中國煤田地質, 2002, 14(S1): 1-4.
            TANG Xiuyi, HUANG Wenhui. Trace elements of coal and its significances on research[J]. Coal Geology of China, 2002, 14(S1): 1-4.
            [3] 趙振華. 微量元素地球化學原理(第2版)[M]. 北京: 科學出版社, 2016.
            [4] FINKELMAN R B. Modes of occurrence of potentially hazardous elements in coal: levels of confidence[J]. Fuel Processing Technology, 1994, 39(1-3): 21-34.
            [5] 趙峰華, 任德貽. 煤中有害元素的研究現狀及其對環境保護的意義[J]. 能源環境保護, 1998(2): 20-23.
            ZHAO Fenghua, REN Deyi. Recent advance of study on hazardous elements in coal and significance for environmental protection[J]. Energy Environmental Protection, 1998(2): 20-23
            [6] 劉桂建, 彭子成, 王桂梁, 等. 煤中微量元素研究進展[J]. 地球科學進展, 2002(1): 53-62.
            LIU Guijian, PENG Zicheng, WANG Guiliang, et al. Study on trace elements in coal[J]. Advances in Earth Science, 2002(1): 53-62.
            [7] 蔡超, 唐書恒, 秦勇. 煤中有害元素研究現狀[J]. 中國煤炭, 2007, 33(2): 55-57.
            CAI Chao, TANG Shuheng, QIN Yong. Research status of harmful elements in coal[J]. China Coal, 2007, 33(2): 55-57
            [8] FINKELMAN R B. Trace elements in coal[J]. Biological Trace Element Research, 1999, 67(3): 197-204. 
            [9] 趙峰華. 煤中有害微量元素分布賦存機制及燃煤產物淋濾實驗研究[D]. 北京: 中國礦業大學(北京): 1997.
            [10] SWAINE D J. Why trace elements are important[J]. Fuel Processing Technology, 2000, 65-66(1): 21-33.
            [11] 楊柳, 董雪瑩, 孟東陽. 煤中微量元素含量常用測定方法[J]. 中國礦業, 2014, 23(S2): 293-300.
            YANG Liu, DONG Xueying, MENG Dongyang. The common determination method of the trace elements in coal[J]. China Mining Magazine, 2014, 23(S2): 293-300.
            [12] 楊凱源, 盧玉東, 李玉龍, 等. 煤中微量元素測定研究進展[J]. 應用化工, 2021, 50(5): 1387-1394.
            YANG Kaiyuan, LU Yudong, LI Yulong, et al. Advances in the determination of trace elements in coal[J]. Applied Chemical Industry, 2021, 50(5): 1387-1394.
            [13] DAI Shifeng, LUO Yangbing, SEREDIN, V V, et al. Revisiting the late Permian coal from the Huayingshan, Sichuan, Southwestern China: enrichment and occurrence modes of minerals and trace elements[J]. International Journal of Coal Geology, 2014, 122: 110-128.
            [14] DAI Shifeng, REN Deyi, ZHOU Yiping, et al. Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: evidence for a volcanic ash component and influence by submarine exhalation[J]. Chemical Geology, 2008, 255(1-2): 182-194.
            [15] WANG Xibo, WANG Ruixue, WEI Qiang, et al. Mineralogical and geochemical characteristics of Late Permian coals from the Mahe Mine, Zhaotong Coalfield, Northeastern Yunnan, China[J]. Minerals, 2015, 5(3): 380-396.
            [16] ZHUANG Xinguo, QUEROL X, ZENG Rongsu, et al. Mineralogy and geochemistry of coal from the Liupanshui Mining District, Guizhou, south China[J]. International Journal of Coal Geology, 2000, 45(1): 21-37.
            [17] YANG Jianye. Concentrations and modes of occurrence of trace elements in the Late Permian coals from the Puan Coalfield, Southwestern Guizhou, China[J]. Environ Geochem Health, 2006, 28(6): 567-576.
            [18] DAI Shifeng, REN Deyi, TANG Yuegang, et al. Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China[J]. International Journal of Coal Geology, 2005, 61(1-2): 119-137.
            [19] DU Fangpeng, QIAO Junwei, ZHAO Xiaochen, et al. Enrichment of V in Late Permian coals in Gemudi Mine, Western Guizhou, SW China[J]. Journal of Geochemical Exploration, 2021, 221: 106701.
            [20] YANG Tianyang, SHEN Yulin, QIN Yong, et al. Distribution of radioactive elements(Th, U) and formation mechanism of the bottom of the Lopingian(Late Permian) coal-bearing series in western Guizhou, SW China[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108779.
            [21] REN Deyi, ZHAO Fenghua, WANG Yunquan, et al. Distributions of minor and trace elements in Chinese coals[J]. International Journal of Coal Geology, 1999, 40(2): 109-118.
            [22] DAI Shifeng, REN Deyi, CHOU Chenlin, et al. Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology, 2012, 94(1): 3-21.
            [23] MUNIR M A M, LIU G, YOUSAF B, et al. Enrichment and distribution of trace elements in Padhrar, Thar and Kotli coals from Pakistan: comparison to coals from China with an emphasis on the elements distribution[J]. Journal of Geochemical Exploration, 2018, 185: 153-169.
            [24] FINKELMAN R B. Trace and minor elements in coal[A]//Engel M H, Macko S A, Organic Geochemistry[C]//New York: Plenum Press, 1993.
            [25] 袁曉鷹, 張永春, 姜濤. 進口煤炭中有害微量元素的風險類別[J]. 煤炭科技, 2013(1): 95-97.
            YUAN Xiaoying, ZHANG Yongchun, JIANG Tao. Risk classification of harmful microelement in imported coal[J]. Coal Science and Technology Magazine, 2013(1): 95-97.
            [26] SWAINE D J. Trace elements in coal[M]. London: Butterworths, 1990.
            [27] YUDOVICH Y E, KETRIS M P. Mercury in coal: a review part 1. Geochemistry[J]. International Journal of Coal Geology 2005, 62(3): 107-134.
            [28] CAO Qingyi, YANG Liu, REN Wenying, et al. Spatial distribution of harmful trace elements in Chinese coalfields: an application of WebGIS technology[J]. Science of the Total Environment, 2020, 755: 142527. 
            [29] CAO Qingyi YANG Liu, REN Wenying, et al. Environmental geochemical maps of harmful trace elements in Chinese coalfields[J]. Science of the Total Environment, 2021, 799: 149475.
            [30] HUANG Wenhui, WAN Huan, FINKELMAN R B, et al. Distribution of uranium in the main coalfields of China[J]. Energy, Exploration & Exploitation, 2012, 30(5): 819-836. 
            [31] 王運泉, 任德貽, 雷加錦, 等. 煤中微量元素分布和特征初步研究[J]. 地質科學, 1997, 32(1): 65-73.
            WANG Yunquan, REN Deyi, LEI Jiajin, et al. Distribution of minor elements in Chinese coal[J]. Scientia Geologica Sinica, 1997, 32(1): 65-73.
            [32] 趙繼堯, 唐修義, 黃文輝. 中國煤中微量元素的豐度[J]. 中國煤田地質, 2002, 14(S1): 6-14.
            ZHAO Jiyao, TANG Xiuyi, HUANG Wenhui. Abundance of trace elements in coal of China[J]. Coal Geology of China, 2002, 14(S1): 6-14.
            [33] SONG Dangyu, QIN Yong, ZHANG Junying, et al. Concentration and distribution of trace elements in some coals from Northern China[J]. International Journal of Coal Geology, 2007, 69(3): 179-191. 
            [34] 白向飛, 李文華, 陳亞飛, 等. 中國煤中微量元素分布基本特征[J]. 煤質技術, 2007(1): 1-4.
            BAI Xiangfei, LI Wenhua, CHEN Yafei, et al. The general distributions of trace element in Chinese coal[J]. Coal Quality Technology, 2007(1): 1-4.
            [35] ZHUANG Xinguo, QUEROL X, ALASTUEY A, et al. Geochemistry and mineralogy of the Cretaceous Wulantuga high-germanium coal deposit in Shengli Coal Field, Inner Mongolia, Northeastern China[J]. 2006, 66(1-2): 119-136. 
            [36] LI Tong. Element abundances of China’s continental crust and its sedimentary layer and upper continental crust[J]. Chinese Journal of Geochemistry, 1995, 14(1): 26-32.
            [37] 王學求, 周建, 徐善法, 等. 全國地球化學基準網建立與土壤地球化學基準值特征[J]. 中國地質, 2016, 43(5): 1469-1480.
            WANG Xueqiu, ZHOU Jian, XU Shanfa, et al. China soil geochemical baselines networks: data characteristics[J]. Geology in China, 2016, 43(5): 1469-1480.
            [38] 唐修義, 黃文輝. 中國煤中微量元素[M]. 北京: 商務印書館, 2004.
            [39] 任德貽. 煤的微量元素地球化學[M]. 北京: 科學出版社, 2006.
            [40] ESKANAZY G, FINKELMAN R B, CHATTARJEE S. Some considerations concerning the use of correlation coefficients and cluster analysis in interpreting coal geochemistry data[J]. International Journal of Coal Geology, 2010, 83(4): 491-493.
            [41] XIAO Lin, ZHAO Bin, DUAN Piaopiao, et al. Geochemical characteristics of trace elements in the No.6 coal seam from the Chuancaogedan Mine, Jungar Coalfield, Inner Mongolia, China[J]. Minerals, 2016, 6(2): 28.
            [42] 王文峰, 秦勇, 宋黨育. 煤中有害微量元素的賦存狀態[J]. 中國煤田地質, 2003, 15(4): 14-17.
            WANG Wenfeng, QIN Yong, SONG Dangyu. Modes of occurrence on hazardous trace elements in coal[J]. Coal Geology of China, 2003, 15(4): 14-17.
            [43] CHEN Yuanping, LIU Guijian, WANG Lei, et al. Concentration, distribution, and modes of occurrence of selenium in Huaibei coalfield, Anhui Province, China[J]. Environmental Earth Sciences, 2015, 73(10): 6445-6455.
            [44] MI J, REN J, ZHANG H J, et al. Distribution and occurrence of Arsenic in two typical Chinese coals[J]. Energy Sources, 2008, 30(5): 411-419. 
            [45] HUGGINS F E, SEIDU L B A, SHAH N, et al. Elemental modes of occurrence in an Illinois #6 coal and fractions prepared by physical separation techniques at a coal preparation plant[J]. International Journal of Coal Geology, 2009, 78(1): 65-76.
            [46] DIEHL S F, GOLDHABER M B, KOENIG A E, et al. Distribution of Arsenic, Selenium, and other trace elements in high pyrite Appalachian coals: evidence for multiple episodes of Pyrite formation[J]. International Journal of Coal Geology, 2012, 94(94): 238-249.
            [47] RILEY K W, FRENCH D H, FARRELL O P, et al. Modes of occurrence of trace and minor elements in some Australian coals[J]. International Journal of Coal Geology, 2012, 94(1): 214-224. 
            [48] GUO Jiangfeng, YAO Duoxi, CHEN Ping, et al. Distribution, enrichment and modes of occurrence of Arsenic in Chinese coals[J]. Minerals, 2017, 7(7): 114.
            [49] WANG Lei, JU Yiwen, LIU Guijian, et al. Selenium in Chinese coals: distribution, occurrence, and health impact[J]. Environmental Earth Sciences, 2010, 60(8): 1641-1651.
            [50] FINKELMAN R B, DAI Shifeng, FRENCH D. The importance of minerals in coal as the hosts of chemical elements: a review[J]. International Journal of Coal Geology, 2019, 212(1): 103251.
            [51] CAO Qingyi, YANG Liu, QIAN Yahui, et al. Study on mercury species in coal and Pyrolysis-based mercury removal before utilization[J]. ACS Omega, 2020, 5(32): 20215-20223.
            [52] BOYD R J. The partitioning behaviour of boron from tourmaline during ashing of coal[J]. International Journal of Coal Geology, 2002, 53(1): 43-54.
            [53] 汪文軍, 陳冰宇, 丁典識, 等. 淮南煤田潘三礦煤中鋇、錳、鎳的含量及其賦存狀態[J]. 中國煤炭地質, 2018, 30(4): 5-7.
            WANG Wenjun, CHEN Bingyu, DING Dianshi, et al. Content of barium, manganese and nickel in coal and their hosting state in Panji No.3 Coalmine, Huainan Coalfield[J]. Coal Geology of China, 2018, 30(4): 5-7.
            [54] DAI Shifeng, FINKELMAN  R B, FRENCH D, et al. Modes of occurrence of elements in coal: a critical evaluation[J]. Earth-Science Reviews, 2021, 222: 103815.
            [55] 白向飛, 李文華, 陳文敏. 中國煤中鈹的分布賦存特征研究[J]. 燃料化學學報, 2004, 32(2): 155-159.
            BAI Xiangfei, LI Wenhua, CHEN Wenmin. Distribution and modes of occurrence of beryllium in Chinese coals[J]. Journal of Fuel Chemistry and Technology, 2004, 32(2): 155-159.
            [56] YANG Ning, TANG Shuheng, ZHANG Songhang, et al. Fluorine in Chinese coal: a review of distribution, abundance, modes of occurrence, genetic factors and environmental effects[J]. Minerals, 2017, 7(11): 219. 
            [57] SHI Jing, HUANG Wenhui, CHEN Ping, et al. Concentration and distribution of cadmium in coals of China[J]. Minerals, 2018, 8(2): 48.
            [58] LI Qingguang, CHEN Ping, CHEN Jian, et al. Modes of occurrence of Cr, Co, Ni, Cu, Cd, and Pb in the main coal seams of Southwestern China’s Nantong Coalfield[J]. Geochemistry international, 2018, 56(12): 1220-1232.
            [59] WANG Baofeng, LI Wen, LI Baoqing, et al. Study on the fate of As, Hg and Pb in Yima coal via sub-critical water extraction[J]. Fuel, 2007, 86(12-13): 1822-1830.
            [60] HUANG Yaji, JIN Baosheng, ZHONG Zhaoping, et al. Trace elements(Mn, Cr, Pb, Se, Zn, Cd and Hg) in emissions from a pulverized coal boiler[J]. Fuel Processing Technology, 2004, 86(1): 23-32. 
            [61] 寧堅, 靳虎, 王澤安, 等. 煤中氯的賦存與釋放特性研究進展[J]. 煤炭學報, 2019, 44(9): 2886-2897.
            NING Jian, JIN Hu, WANG Zean, et al. Research advances on the occurrence and release characteristics of chlorine in coal[J]. Journal of China Coal Society, 2019, 44(9): 2886-2897.
            [62] 瞿沁嫄, 劉桂建, 孫梅, 等. 中國煤中微量元素錫(Sn)的研究進展[J]. 地學前緣, 2016, 23(3): 68-73.
            QU Qinyuan, LIU Guijian, SUN Mei, et al. A review of the geochemistry of tin(Sn) in Chinese coals: measurement, concentration, distribution and modes of occurrence[J]. Earth Science Frontiers, 2016, 23(3): 68-73.
            [63] ZHANG Yongsheng, SHI Minglei, WANG Jiawei, et al. Occurrence of uranium in Chinese coals and its emissions from coal-fired power plants[J]. Fuel, 2016, 166: 404-409.
            [64] DUAN Piaopiao, WANG Wenfeng, SANG Shuxun, et al. Modes of occurrence and removal of toxic elements from high-uranium coals of Rongyang Mine by stepped release flotation[J]. Energy Science & Engineering, 2019, 7(5): 1678-1686.
            [65] 秦勇, 王文峰, 宋黨育. 太西煤中有害元素在洗選過程中的遷移行為與機理[J]. 燃料化學學報, 2002, 30(2): 147-150.
            QIN Yong, WANG Wenfeng, SONG Dangyu. Migrating behavior and mechanism of deleterious elements in Taixi coals during cleaning process[J]. Journal of Fuel Chemistry and Technology, 2002, 30(2): 147-150.
            [66] 宋黨育, 秦勇, 張軍營, 等. 西部煤中有害痕量元素的洗選脫除特性[J]. 中國礦業大學學報, 2006, 35(2): 255-259.
            SONG Dangyu, QIN Yong, ZHANG Junying, et al. Washability Characteristics of Hazardous Trace Elements in Coals from western region of China[J]. Journal of China University of Mining and Technology, 2006, 35(2): 255-259.
            [67] 王琳. 煤炭洗選脫除煤中有害微量元素的實驗研究[J]. 潔凈煤技術, 2007, 13(3): 13-17.
            WANG Lin. The study on removal of trace elements in coal by coal preparation[J]. Clean Coal Technology, 2007, 13(3): 13-17.
            [68] 唐躍剛, 常春祥, 張義忠. 河北開灤礦區煤洗選過程中15種主要有害微量元素的遷移和分配特征[J]. 地球化學, 2005, 34(4): 366-372.
            TANG Yuegang, CHANG Chunxiang, ZHANG Yizhong. Migration and distribution of fifteen toxic trace elements during the coal washing of the Kailuan Coalfield, Hebei Province[J]. Geochimica, 2005, 34(4): 366-372.
            [69] 張博. 煤中有害微量元素的潔凈潛勢分析[J]. 潔凈煤技術, 2015, 21(4): 20-24.
            ZHANG Bo. Cleaning potentiality analysis of harmful microelements in coal[J]. Clean Coal Technology, 2015, 21(4): 20-24.
            [70] 王文峰, 秦勇, 宋黨育. 煤中有害元素的洗選潔凈潛勢[J]. 燃料化學學報, 2003, 31(4): 295-299.
            WANG Wenfeng, QIN Yong, SONG Dangyu. Cleaning potential of hazardous elements during coal washing[J]. Journal of Fuel Chemistry and Technology, 2003, 31(4): 295-299.
            [71] XU Minghou, YAN Rong, ZHENG Chuguang, et al. Status of trace element emission in a coal combustion process: a review[J]. Fuel Processing Technology, 2004, 85(2-3): 215-237. 
            [72] ZHAO Yongchun, YANG Jianping, MA Siming, et al. Emission controls of mercury and other trace elements during coal combustion in China: a review[J]. International Geology Review, 2017, 60(5-6): 638-670.
            [73] MEIJ R, WINKEL H. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations[J]. Atmospheric Environment, 2001, 41(40): 9262-9272.
            [74] ZHANG Wentie, YOU Mu, HU Yunhu. The distribution and accumulation characteristics of heavy metals in soil and plant from Huainan coalfield, China[J]. Environmental Progress & Sustainable Energy, 2016, 35(4): 1098-1104.
            [75] ZHENG Chenghang, WANG Li, ZHANG Yongxin, et al. Co-benefit of hazardous trace elements capture in dust removal devices of ultra-low emission coal-fired power plants[J]. Journal of Zhejiang University-Science A, 2018, 19(1): 68-79.
            [76] CHEN Jian, ZHANG Bofei, ZHANG Suan, et al. A complete atmospheric emission inventory of F, As, Se, Cd, Sb, Hg, Pb, and U from coal-fired power plants in Anhui Province, Eastern China[J]. Environmental Geochemistry and Health, 2020, 43(5): 1817-1837.
            [77] HAN Deming, XU Liwen, WU Qingru, et al. Potential environmental risk of trace elements in fly ash and gypsum from ultra-low emission coal-fired power plants in China[J]. Science of The Total Environment, 2021, 798: 149116. 
            [78] 王紹靜, 吳曉琴, 劉成, 等. 脫硫石膏中典型重金屬組分批淋濾特性研究[J]. 環境科學與技術, 2017, 40(3): 68-73.
            WANG Shaojing, WU Xiaoqin, LIU Cheng, et al. Batch leaching characteristics of heavy metals in FGD gypsum[J]. Environmental Science & Technology, 2017, 40(3): 68-73.
            [79] 顧大釗, 李井峰, 曹志國, 等. 我國煤礦礦井水保護利用發展戰略與工程科技[J]. 煤炭學報, 2021, 46(10): 3079-3089.
            GU Dazhao, LI Jingfeng, CAO Zhiguo, et al. Technology and engineering development strategy of water protection and utilization of coal mine in China[J]. Journal of China Coal Society, 2021, 46(10): 3079-3089.
            [80] SUN Wenjie, WU Qiang, DONG Donglin, et al. Avoiding coal-water conflicts during the development of China’s large coal-producing regions[J]. Mine Water and the Environment, 2012, 31(1): 74-78. 
            [81] TAN Min, WANG Kun, XU Zhou, et al. Study on heavy metal contamination in high water table coal mining subsidence ponds that use different resource reutilization methods[J]. Water, 2020, 12(12): 3348. 
            [82] SHYLLA L, BARIK S K, BEHERA M D, et al. Impact of heavy metals on water quality and indigenous Bacillus spp. prevalent in rat-hole coal mines[J]. 3 Biotech, 2021, 11(5): 253. 
            [83] LIU Jialin, HE Haibin, CHEN Yumu, et al. Leaching behavior of heavy metals in coal gasification residuals[J]. Polish Journal of Environmental Studies, 2017, 26(5): 2067-2073. 
            [84] EQUEENUDDIN S M. Leaching of trace elements from Indian coal[J]. Journal of the Geological Society of India, 2015, 86(1): 102-106. 
            [85] 王甜甜, 靳德武, 楊建. 內蒙古某礦礦井水重金屬污染特征及來源分析[J]. 煤田地質與勘探, 2021, 49(5): 45-51.
            WANG Tiantian, JIN Dewu, YANG Jian. Heavy metal pollution characteristics and source analysis of water drainage from a mine in Inner Mongolia[J]. Coal Geology & Exploration, 2021, 49(5): 45-51.
            [86] 孫紅福, 趙峰華, 李靜琴, 等. 混合煤礦酸性水中金屬元素的遷移行為[J]. 環境科學與技術, 2010, 33(S2): 111-114.
            SUN Hongfu, ZHAO Fenghua, LI Jingqin, et al. Migration of metal elements in mixed acid mine drainage[J]. Environmental Science and Technology, 2010, 33(S2): 111-114.
            [87] 趙峰華, 孫紅福, 李文生. 煤礦酸性礦井水中有害元素的遷移特性[J]. 煤炭學報, 2007, 32(3): 261-266.
            ZHAO Fenghua, SUN Hongfu, LI Wensheng. Migration of metal elements in acid coal mine drainage[J]. Journal of Coal society, 2007, 32(3): 261-266.
            [88] WORRALL F, PEARSON D G. Water-rock interaction in an acidic mine discharge as indicated by rare earth element patterns[J]. Geochimica Et Cosmochimica Acta, 2001, 65(18): 3027-3040.
            [89] KUENZER C, STRACHER G B. Geomorphology of coal seam fires[J]. Geomorphology, 2012, 138: 209-222.
            [90] 張建民, 管海晏, 曹代勇, 等. 中國地下煤火研究與治理[M]. 北京: 煤炭工業出版社, 2008.
            [91] ZHANG Jianhong, KUENZER C. Thermal surface characteristics of coal fires 1 results of in-situ measurements[J]. Journal of Applied Geophysics, 2007, 63(3): 117-134.
            [92] ZENG Qiang, DONG Jingxuan, ZHAO Longhui. Investigation of the potential risk of coal fire to local environment: a case study of Daquanhu Coal Fire, Xinjiang Region, China[J]. Science of The Total Environment, 2018, 640: 1478-1488.
            [93] WANG Gang, CAO Fei, SHAN Bing. Sources and assessment of mercury and other heavy metal contamination in soils surrounding the Wuda Underground Coal Fire Area, Inner Mongolia, China[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(6): 828-833.
            [94] 周楠, 姚依南, 宋衛劍, 等. 煤礦矸石處理技術現狀與展望[J]. 采礦與安全工程學報, 2020, 37(1): 136-146.
            ZHOU Nan, YAO Yinan, SONG Weijian, et al. Present situation and prospect of coal gangue treatment technology[J]. Journal of Mining & Safety Engineering, 2020, 37(1): 136-146.
            [95] DONG Yingbo, LIU Yue, LIN Hai. Leaching behavior of V, Pb, Cd, Cr, and As from stone coal waste rock with different particle sizes[J]. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(8): 861-870. 
            [96] HUA Chunyu, ZHOU Guangzhu, YIN Xin, et al. Assessment of heavy metal in coal gangue: distribution, leaching characteristic and potential ecological risk[J]. Environmental Science and Pollution Research, 2018, 25(32): 32321-32331.
            [97] ZHANG Hongjian, OUYANG Sailan. Release characteristics of heavy metals from coal gangue under simulation leaching conditions[J]. Energy, Exploration & Exploitation, 2014, 32(2): 413422.
            [98] LIU Xiaoyang, BAI Zhongke, SHI Huading, et al. Heavy metal pollution of soils from coal mines in China[J]. Natural Hazards, 2019, 99(2): 1163-1177. 
            [99] HU Yunhu, YOU Mu, LIU Guijian, et al. Characteristics and potential ecological risks of heavy metal pollution in surface soil around coal-fired power plant[J]. Environmental Earth Sciences, 2021, 80(17): 566.
            [100] PENG Xiuhong, QING Chengshi, XU Bo, et al. The time effect research on heavy metal elements pollution of urban industrial fire coal[C]//Asia-Pacific Power and Energy Engineering Conference(APPEEC), 2010.
            [101] 黃福荃. 淺談地區能源數據庫研究與建設[J]. 能源技術, 1991(3): 11-14.
            HUANG Fuquan. The research and construction of regional energy database[J]. Energy Technology, 1991(3): 11-14.
            [102] JOHNSON R H. Geochemical data from groundwater at the proposed Dewey Burdock uranium in-situ recovery mine, Edgemont, South Dakota[EB/OL]. https://pubs.er.usgs.gov/publication/ofr20121070.
            [103] 成杭新, 楊忠芳, 奚小環, 等. 新一輪全球地球化學填圖: 中國的機遇和挑戰[J]. 地學前緣, 2008, 15(5): 9-22.
            CHENG Hangxin, YANG Zhongfang, XI Xiaohuan, et al. A new round of global geochemical mapping: opportunity and challenge to China[J]. Earth Science Frontiers, 2008, 15(5): 9-22.
            [104] DARNLEY A G. A global geochemical database for environment and resource management. Recommendations for international geochemical mapping. Final report of IGCP Project 259[R]. Paris: Unesco, 1995.
            [105] NIU Xianzeng, LEHNERT K A, WILLIAMS J, et al. CZChemDB and EarthChem: advancing management and access of critical zone geochemical data[J]. Applied Geochemistry, 2011, 26(3): 108-111.
            [106] ICHIYAMA Y, HANAFUSA Y, SOMA S. The “GANSEKI” database of ocean-floor rock samples[J]. Journal of the Geological Society of Japan, 2011, 117(10): 579-584.
            [107] SPEAR F S, HALLETT B, PYLE J M, et al. MetPetDB: a database for metamorphic geochemistry[J]. Geochemistry Geophysics Geosystems, 2013, 10(12): 185-196.
            [108] 陳禰生, 陳文敏, 陶玉靈. 全國煤炭資源數據庫的建立: 煤質部分[J]. 煤炭科學技術, 1984(9): 48-50.
            CHEN Misheng, CHEN Wenmin, TAO Yuling. Establishment of national coal resources database: part of coal quality[J]. Coal Science and Technology, 1984(9): 48-50.
            [109] 葉楓. 螢石礦產資源數據庫[J]. 浙江國土資源, 1990(2): 69-78.
            YE Feng. Database of fluorite mineral resources[J]. Zhejiang Land and Resources, 1990(2): 69-78.
            [110] 熊亮萍. 地熱資源數據庫系統[J]. 新能源, 1992(6): 42-44.
            XIONG Liangping. Geothermal resources database system[J]. New Energy, 1992(6): 42-44.
            [111] 莊幸. 中國能源數據庫在能源研究中的應用[C]//第五屆科學數據庫與信息技術學術研討會, 2000.
            [112] 陳文敏. 中國“煤種資源數據庫”[J]. 潔凈煤技術, 1996, 2(1): 55-57.
            CHEN Wenmin. Database of coal resources database of China[J]. Clean Coal Technology, 1996, 2(1): 55-57.
            [113] 張瑞新, 石寧, 王沖, 等. 霍林河南露天礦煤質管理信息系統及其應用[J]. 中國礦業, 2000, 9(6): 64-67.
            ZHANG Ruixin, SHI Ning, WANG Chong, et al. Information system and its application for coal quality control of southern open pit mine of Huolinhe Coalfield[J]. China Mining Magazine, 2000, 9(6): 64-67.
            [114] 劉橋喜, 毛善君, 楊鋒杰, 等. ODBC煤礦地測C/S管理信息系統的實現[J]. 煤田地質與勘探, 2000, 28(4): 24-27.
            LIU Qiaoxi, MAO Shanjun, YANG Fengjie, et al. Realization of client/server management information system of coal mine based on ODBC in geologyand survey[J]. Coalfield Geology and Exploration, 2000, 28(4): 24-27.
            [115] 曹代勇, 趙占芳, 黃佩, 等. 基于Oracle9i的中國煤炭特性數據庫的設計與開發[J]. 中國礦業, 2005, 14(6): 1-3.
            CAO Daiyong, ZHAO Zhanfang, HUANG Pei, et al. The design and development of China coal quality database system based on Oracle9i[J]. China Mining Magazine, 2005, 14(6): 1-3.
            [116] 毛先成, 林麗, 陳春. 基于.NET的綜合地質數據庫管理系統的設計與實現[J]. 地質找礦論叢, 2010, 25(2): 163-166.
            MAO Xiancheng, Lin Li, Chen Chun. Design and implementation of the general geology database management system based on .NET framework[J]. Contributions to Geology and Mineral Resources Research, 2010, 25(2): 163-166.
            [117] 張小桐, 黃明. 煤炭資源調查數據庫系統設計與實現[J]. 測繪通報, 2014(S2): 292-296.
            ZHANG Xiaotong, HUANG Ming. Design and implementation of coal resources survey database system[J]. Bulletin of Surveying and Mapping, 2014(S2): 292-296.
            [118] YANG Liu, BAI Xue, HU Yinjie, et al. Construction of trace element in coal of China database management system: based on WebGIS[J]. Sains Malaysiana, 2017, 46(11): 2195-2204.

            曹慶一,楊柳,錢雅慧,等. 我國煤中有害微量元素研究進展[J]. 中國礦業,2022
            上一篇:黃河流域煤礦生態修復技術研究現狀及展望
            下一篇:我國礦產資源資產清查制度建設研究
            版權所有《中國礦業》雜志社有限公司 Copyright ? 2000-2021CHINAMININGMAGAZINE.com All Rights Reserved
            京ICP備13051254號-1京公網安備 11010502043614號
            无码国产福利AV私拍

              <th id="vc94l"><option id="vc94l"></option></th>
              <tr id="vc94l"></tr>

                <strike id="vc94l"></strike>
                <code id="vc94l"></code>

                1. <th id="vc94l"><video id="vc94l"></video></th>

                    1. <strike id="vc94l"></strike>